Forschungsgruppe "Detection and Surveillance of Spatial and Spatiotemporal Clusters"

Projektbeschreibung

Projektleitung:

  • Prof. Dr. Philipp Otto, University of Glasgow

  • Prof. Dr. Raid Amin, University of West Florida, Pensacola

Projektbearbeitung:

  • Miryam Sarah Merk (Akademische Mitarbeiterin)

Kooperationspartnerschaften:

Prof. Dr. Sabrina Zajak, Juniorprofessorin am Institut für soziale Bewegungen, Ruhr-Universität Bochum, DeZIM

Drittmittelfinanzierung:

Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg (Seed Money-Förderung Januar 2017 bis Dezember 2018)

Projektlaufzeit:

Januar 2017 - Dezember 2018

Publikationen

  • Garthoff, Robert/ Otto, Philipp: “Control Charts for Multivariate Spatial Autoregressive Models”, in: AStA Advances in Statistical Analysis 101(1), 2017, pp. 67-94.
  • Merk, Miryam S./ Otto, Philipp: “Estimation of Anisotropic, Time‐Varying Spatial Spillovers of Fine Par-ticulate Matter Due to Wind Direction”, in: Geographical Analysis 2019. DOI: 10.1111/gean.12205.
  • Otto, Philipp/ Schmid, Wolfgang/ Garthoff, Robert: “Stochastic Properties of Spatial and Spatiotemporal Arch Models”, in: Statistical Papers, 1(16), 2019, DOI: 10.1007/s00362-019-01106-x.
  • Otto, Philipp: spGARCH: “An R-Package for Spatial and Spatiotemporal ARCH and GARCH models”, in: The R-Journal, 11(2), 2019, pp. 401-420.
  • Otto, Philipp/ Schmid, Wolfgang: “Discussion of ‘Statistical Methods for Network Surveillance’ by Daniel Jeske, Nathaniel Stevens, Alexander Tartakovsky, and James Wilson”, in: Applied Stochastic Models in Business and Industry, 34(4), 2019, pp. 452-456. DOI: 10.1002/asmb.2360.
  • Otto, Philipp/ Schmid, Wolfgang/ Garthoff, Robert: “Generalised Spatial and Spatiotemporal Autoregres-sive Conditional Heteroscedasticity”, in: Spatial Statistics, 26, 2018, pp. 125-145.
  • Otto, Philipp/ Schmid, Wolfgang: “Spatiotemporal analysis of German real-estate prices”, in: The Annals of Regional Science, 60(1), 2018, pp. 41-72.
  • Otto, Philipp: “A Note on Efficient Simulation of Multidimensional Spatial Autoregressive Processes”, in: Communications in Statistics - Simulation and Computation, 46(6), 2017, pp. 4547-4558.
  • Otto, Philipp/ Lange, Anna-Liesa: Arbeitsbuch zur Angewandten Statistik. Mit Aufgaben zur Software R und detaillierten Lösungen, Berlin: Springer Gabler 2017.
  • Otto, Philipp/ Schmid, Wolfgang: “Detection of Spatial Change Points in the Mean and Covariances of Multivariate Simultaneous Auto-Regressive Models”, in: Biometrical Journal, 58(5), 2016, pp. 1113-1137.

 

Projektbeschreibung

Die aktuelle mathematische, statistische Forschung zu Eingrenzungen räumlicher, stochastischer Prozesse, sogenannten räumlichen Strukturbrüchen (bei räumlich unabhängigen Prozessen u.a.: Kulldorf, Nagarwall (1995); Amin, Hendryx, Shull, Bohnert (2014); bei räumlich abhängigen Prozessen: Otto, Schmid (2016); Garthoff, Otto (2016)), soll um die zeitliche Überwachung sowie die Modellierung solcher Strukturbrüche bei insbesondere nichtlinearen, räumlichen Prozessen erweitert werden. Ein nichtlinearer räumlicher ARCH Prozess hat die besondere Eigenschaft, dass er im Gegensatz zum räumlichen autoregressiven Prozess keine Häufungspunkte/Cluster im Erwartungswert aufweist, sondern ausschließlich in der Varianz, der Streuung des Prozesses. Die Streuung bezeichnet ein Maß, wie weit die Beobachtungen von einem mittleren durchschnittlichen Wert entfernt liegen können. Ein räumliches Cluster oder auch Gebiet der Häufung ist folglich nicht durch besonders große oder kleine Beobachtungen der Zufallsvariable (beispielsweise die Bevölkerungsdichte) charakterisiert, sondern durch eine besonders hohe oder geringe Streuung der Beobachtungen.

Die Problemstellungen werden aus einer theoretischen, grundlegenden Sichtweise betrachtet werden. Durch die allgemeine, theoretische Herangehensweise ergeben sich weitreichende empirische Forschungsgebiete, in welchen die Anwendung der Methoden gesehen werden kann. Diese Anwendungsgebiete reichen von den Sozial- und Kulturwissenschaften, über die Wirtschafts- und Ingenieurwissenschaften bis hin zur Biometrie und Medizin. Des Weiteren werden Verknüpfungen zu empirischen Arbeiten, insbesondere im Bereich der Grenzforschung, gezogen werden.

Eine besondere Anwendung dieser theoretischen Entwicklungen ist die Überwachung der räumlichen Eingrenzungen im Zeitverlauf. Ändert sich entweder das Zentrum des eingegrenzten Gebietes (Cluster), die Distanz δ der Grenze vom Zentrum oder beide Parameter, so beabsichtigt man diese Änderung so schnell wie möglich mit Hilfe von Verfahren der Statistischen Prozesskontrolle aufzudecken. Die einzelne Betrachtung der Parameter 'Zentrum' oder 'Distanz' folgt als direkter Spezialfall des allgemeinen Problems. Wird eine Änderung des Zentrums, nicht aber der Distanz aufgedeckt, so zeigt dies eine signifikante Änderung der Lage des eingegrenzten Gebietes an. Dieses könnte sich beispielsweise in nördlicher Richtung verschoben haben. Im Gegensatz dazu zeigt eine Änderung in der Distanz, nicht aber des Zentrums, eine Änderung der Größe des eingegrenzten Gebietes an. Eine Vergrößerung der Distanz spricht für ein größeres Gebiet, wohingegen eine Verringerung des Parameters δ für eine Verkleinerung des Gebietes spricht. Die Lage des räumlichen Clusters bleibt dabei gleich.
 


 

Im Rahmen der Seed Money-Förderung der Forschungsgruppe „Detection and Surveillance of Spatial and Spatiotemporal Clusters" am Viadrina Center B/ORDERS IN MOTION konnte das Drittmittelprojekt „Räumliche und räumlich-zeitliche GARCH Modelle“ erfolgreich bei der DFG eingeworben werden.

Viadrina Center B/ORDERS IN MOTION

Europa-Universität Viadrina Frankfurt (Oder)

Besucheradresse: Große Scharrnstraße 23a, 15230 Frankfurt (Oder), Etage 4